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ABSTRACT

In the dynamical analysis of multiple stellar systems, one usually has to deal with problems involving several
perturbations: more than two bodies, mass loss, nonspherical shape, rotation, and such. In order to take into
account all of them, we have derived a multiparametric theory based on Lie transforms. It allows us to solve
perturbation problems involving an arbitrary number of small parameters in the Hamiltonian formulation. Based
on the Lie transforms theory, a complete generalization of the Hori–Deprit method is obtained for N parameters—
with N arbitrary—and general expressions are explicitly provided. This method is used to solve the classical
Gyldén–Meščerskij problem—the relative motion of a binary system the components of which are losing mass over
time—when the primary’s oblateness, as well as relativistic effects, is taken into account. Besides this, speed and
accuracy comparisons between this analytical method and a numerical one are accomplished.

Key words: binaries: general – celestial mechanics – methods: analytical – relativity – stars: mass loss – stellar
dynamics

1. INTRODUCTION

The need for solving nonlinear differential equations arises
in the study of many dynamical problems. Since, in general,
the exact solution cannot be found by means of classical
integration methods, it is necessary to use alternative analytical
or numerical methods. The perturbation methods based on
asymptotic developments of the equations of motion in terms of
one or more small parameters belong to the first class.

In the present paper we deal with perturbation theories for
nonlinear dynamical systems based on the so-called method of
Lie transforms. The first methods of this type, referring to the
case of Hamiltonian systems depending on one small parameter,
were given by Hori (1966) and Deprit (1969). Although these
methods are equivalent (Campbell & Jefferys 1970; Henrard
& Roels 1974), they are not identical. Later, Kamel (1970)
and Henrard (1970) generalized them to arbitrary systems of
differential equations. Ribera (1981) and Abad & Ribera (1984)
obtained a Lie transform method applicable to Hamiltonian
systems depending on two small parameters. This was used
by Prieto & Docobo (1997a, 1997b) to analytically integrate the
two-body problem with slowly decreasing mass. Varadi (1985)
also obtained a two-parameter method based on differential
geometry, as in Henrard & Roels (1974). This was subsequently
extended to the case of three parameters by Ahmed (1993).
Recently, a three-parameter canonical method (Andrade 2002)
has been applied to the integration of the two-body problem
with mass loss depending both on the time and the distance of
the bodies (Docobo & Andrade 2002).

Despite these partial results, there are a considerable number
of interesting problems in different fields in which it is neces-
sary to consider a large number of small parameters and their
associated perturbative expansions. To our knowledge, no gen-
eralization of the Lie canonical method has so far been presented
in the case of N parameters, with N arbitrary. This is precisely
the purpose of the present paper.

In particular, we provide below (Section 2) the general
formulae of a canonical method based on Lie transforms, for an
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undefined number of small parameters. To illustrate this method,
we apply it (Section 3) in a four-parametric case, namely the
Gyldén–Meščerskij problem of relative motion of two stars
that are losing mass over time when, in addition, the primary’s
oblateness, as well as relativistic effects, is taken into account.
Conclusions are summarized in Section 4.

2. MATHEMATICAL DERIVATIONS

2.1. Transformation of a Hamiltonian by Means of an
N -parametric Group of Canonical Transformations

Let a dynamical system of n degrees of freedom be defined
by the flow under the Hamiltonian H = H(�x, t; ε), where
�x = (x, X) ∈ R

n × R
n, x, X are canonical coordinates and

momenta, respectively. The associated canonical system that
describes the dynamical evolution of the system is

�̇x = J ∇�xH,

where J is the symplectic matrix (J−1 = J T = −J )

J =
(

0n In

−In 0n

)
,

with 0n and In being the null and unity matrix of nth order,
respectively.

Let us suppose that the Hamiltonian can be developed
as a power series of an N -dimensional parameter ε =
(ε1, ε2, . . . , εN ) belonging to a neighborhood U0 of the origin
(0, 0, . . . , 0) of R

N , with N∈ Z
+:

H(�x, t; ε) = H0(�x, t) +
∑
jN �1

1

jN !

jN∑
jN−1=0

. . .

j3∑
j2=0

j2∑
j1=0

ε
j1
1 ε

j2−j1
2

× . . . ε
jN −jN−1
N Hj1,j2−j1,...,jN −jN−1 (�x, t), (1)

where

Hj1,j2−j1,...,jN −jN−1 (�x, t) ≡
(

jN

jN−1

)
. . .

(
j2

j1

)
∂

j

1

∂ε
j1
1

∂j2−j1

∂ε
j2−j1
2

× . . .
∂jN−jN−1

∂ε
jN−jN−1
N

H(�x, t; 0).
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Now, consider an N -parametric Lie group of canonical
transformations GN of the extended phase space R

2n+N given
by

�x = eYε �y,

where the Yε operator is defined by means of the Poisson
brackets

Yε = {−;Wε},

with Wε(�y, t) as the generating function of the transformation.
This can be expressed as power series

Wε(�y, t; ε) =
N∑

i=1

εiW i(�y, t; εi), (2)

where

W i(�y, t; εi) =
∑
j�0

ε
j

i

j !
W i

j+1(�y, t), i = 1, . . . , N.

The canonical property of the above transformation can be
demonstrated by considering that the generating function itself
is a sum of N independent parts, so that each of them is a
solution of the Hamilton equations of a dynamical system of
Hamiltonian W i and time εi . Furthermore, we can write Yε as

Yε =
N∑

i=1

εiYi,

with Yi = {−;W i}, i = 1, . . . , N .

Proposition. The transformed Hamiltonian of (1) is given by

H∗(�y, t; ε) = H0(�y, t) +
∑
jN �1

Y
jN
ε

jN !
H0(�y, t) +

∑
jN�1

[
1

jN !

jN∑
jN−1=0

× . . .

j3∑
j2=0

j2∑
j1=0

ε
j1
1 ε

j2−j1
2 . . . ε

jN −jN−1
N

·
[
Hj1,j2−j1,...,jN −jN−1 (�y, t)

+
∑
i�1

Y i
ε

i!
Hj1,j2−j1,...,jN −jN−1 (�y, t)

]]
. (3)

Proof. Expansion (1) can be cast in the form

H(�x, t; ε) = H0(�x, t) +
∑
jN �1

FjN
(�x, t; ε), (4)

where

FjN
(�x, t; ε) ≡ 1

jN !

jN∑
jN−1=0

. . .

j3∑
j2=0

j2∑
j1=0

ε
j1
1 ε

j2−j1
2 . . . ε

jN −jN−1
N

· Hj1,j2−j1,...,jN −jN−1 (�x, t). (5)

It can be readily demonstrated (see Ribera 1981 for the two-
parameter case) that, for all jN � 1, the function FjN

(�x, t; ε)
is a homogeneous function of jN th degree in the variables

(ε1, ε2, . . . , εN ). In addition, F is a differentiable scalar field
defined on R

2n+N ; the transformed function F ∗ is also a scalar
field of the form

F ∗(�y, t; ε) ≡
∑
jN �0

Y
jN
ε

jN !
F (�y, t). (6)

From Equations (4) and (6) we have

H∗(�y, t; ε) = H∗
0(�y, t; ε) +

∑
jN�1

F ∗
jN

(�y, t; ε), (7)

where

H∗
0(�y, t; ε) =

∑
jN�0

Y
jN
ε

jN !
H0(�y, t) = H0(�y, t)+

∑
jN �1

Y
jN
ε

jN !
H0(�y, t).

(8)
From Equations (5) and (6) we obtain

F ∗
jN

(�y, t; ε) ≡ 1

jN !

jN∑
jN−1=0

. . .

j3∑
j2=0

j2∑
j1=0

ε
j1
1 ε

j2−j1
2 . . . ε

jN −jN−1
N

· H∗
j1,j2−j1,...,jN −jN−1

(�y, t)

= 1

jN !

jN∑
jN−1=0

. . .

j3∑
j2=0

j2∑
j1=0

ε
j1
1 ε

j2−j1
2 . . . ε

jN −jN−1
N

·
∑
i�0

Y i
ε

i!
Hj1,j2−j1,...,jN −jN−1 (�y, t)

= 1

jN !

jN∑
jN−1=0

. . .

j3∑
j2=0

j2∑
j1=0

ε
j1
1 ε

j2−j1
2 . . . ε

jN −jN−1
N

·
[
Hj1,j2−j1,...,jN −jN−1 (�y, t)

+
∑
i�1

Y i
ε

i!
Hj1,j2−j1,...,jN −jN−1 (�y, t)

]
. (9)

Substituting Equations (8) and (9) into Equation (7) yields
Equation (3). ��

The so-called remainder function of the nonconservative
canonical transformation is

R(�y, t; ε) = −
∑

jN−1�1

Y
jN−1−1
ε

jN−1!
Wεt , (10)

where

Wεt ≡ ∂Wε

∂t
.

This function satisfies

∇�yR = −J �yt .

After the transformation, the new canonical system is

�̇y = J ∇�yK,
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where the Hamiltonian is given by

K(�y, t; ε) = H∗(�y, t; ε) + R(�y, t; ε), (11)

which, as we have just seen, can be developed as a power series
of the parameters

K(�y, t; ε) = K0(�y, t) +
∑
jN �1

1

jN !

jN∑
jN−1=0

. . .

j3∑
j2=0

j2∑
j1=0

ε
j1
1 ε

j2−j1
2

× . . . ε
jN −jN−1
N Kj1,j2−j1,...,jN −jN−1 (�y, t).

2.2. Development of the Generating Function as an
N -parameter Power Series

The components W i of the generating function Wε can
be developed as a power series of the components of the
N -dimensional parameter ε = (ε1, ε2, . . . , εN ), just as we saw
in Equation (2). Then, the Yε operator can be written as

Yε =
N∑

i=1

εi{−;W i} =
N∑

i=1

εi

{
−;

∑
j�0

ε
j

i

j !
W i

j+1

}

=
N∑

i=1

εi

∑
j�0

ε
j

i

j !

{−;W i
j+1

} =
N∑

i=1

∑
j�0

ε
j+1
i

j !

{−;W i
j+1

}
,

or

Yε =
N∑

i=1

∑
j�0

ε
j+1
i

j !
Li

j+1

where we have defined the Lie operator

Li
j = {−;W i

j

}
.

In general, we have

Li1,...,in
j1,...,jn

= {{
. . .

{−;W in
jn

}; . . .
};W i1

j1

}
.

We can also prove by induction that

Yn
ε =

N∑
i1,...,in=1

∑
j1,...,jn�0

ε
j1+1
i1

ε
j2+1
i2

. . . ε
jn+1
in

j1!j2! . . . jn!
Li1,i2,...,in

j1+1,j2+1,...,jn+1.

2.3. Example: Construction of a Four-Parametric Method

Particularizing for four parameters, we obtain, with N =
1, 2, 3, 4 up to second order, a set of relationships. When those
are put into Equations (3) and (10), we obtain the expressions
for the transformed Hamiltonian and the remainder function,
respectively.

2.3.1. Homological Equations

Finally, we have to substitute these expressions as well as the
new Hamiltonian function as a power series in Equation (11)

and to equal the terms of the same order. In this way, we obtain
a chain of so-called homological equations:

K0(�y, t) = H0(�y, t),

Kn000 = n

[{
H0;W1

n

}
+

∂W1
n

∂t

]
+ An000,

K0n00 = n

[{
H0;W2

n

}
+

∂W2
n

∂t

]
+ A0n00, (12)

K00n0 = n

[{
H0;W3

n

}
+

∂W3
n

∂t

]
+ A00n0,

K000n = n

[{
H0;W4

n

}
+

∂W4
n

∂t

]
+ A000n,

where, up to second order, we define

A1000 = H1000, A2000 = H2000 +
{
K1000 + H1000;W1

1

}
,

A0100 = H0100, A0200 = H0200 +
{
K0100 + H0100;W2

1

}
,

A0010 = H0010, A0020 = H0020 +
{
K0010 + H0010;W3

1

}
,

A0001 = H0001, A0002 = H0002 +
{
K0001 + H0001;W4

1

}
.

Thus, the final terms on the right-hand side of Equation (12)
are linear combinations of nested Poisson brackets involving
the known terms (Hj000)1�j�n, (H0j00)1�j�n, (H00j0)1�j�n,
(H000j )1�j�n,

(
W1

j

)
1�j�n−1,

(
W2

j

)
1�j�n−1,

(
W3

j

)
1�j�n−1, and(

W4
j

)
1�j�n−1.

Formally, the homological Equations (12) allow us to ap-
proach them in two different ways. On the one hand, we may
suppose that the generating function W is known and thus we
should determine the new Hamiltonian K or, on the other hand,
we may suppose that we know the new Hamiltonian and there-
fore we should solve Equation (12) in order to obtain the gen-
erating function. The last problem is the most common because
the new Hamiltonian is usually chosen in order to exhibit certain
properties (see Section 2.3.3).

2.3.2. Mixed Terms

The main variation of N -parametric methods with respect
to the one-parametric methods is that they give rise to mixed
terms in the new Hamiltonian. Indeed, each of these new mixed
terms contains the known mixed terms of the old Hamiltonian
and linear combinations of nested Poisson brackets involving
the nonmixed terms of the old Hamiltonian, similar to the final
terms on the right-hand side of Equation (12). Up to second
order, the mixed terms of the new Hamiltonian are given by

K1100 = H1100 +
{
K1000 + H1000;W2

1

}
+

{
K0100 + H0100;W1

1

}
,

K1010 = H1010 +
{
K1000 + H1000;W3

1

}
+

{
K0010 + H0010;W1

1

}
,

K1001 = H1001 +
{
K1000 + H1000;W4

1

}
+

{
K0001 + H0001;W1

1

}
,

K0110 = H0110 +
{
K0100 + H0100;W3

1

}
+

{
K0010 + H0010;W2

1

}
,

K0101 = H0101 +
{
K0100 + H0100;W4

1

}
+

{
K0001 + H0001;W2

1

}
,

K0011 = H0011 +
{
K0010 + H0010;W4

1

}
+

{
K0001 + H0001;W3

1

}
.

(13)
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We can see that the new nonmixed auxiliary terms A in
(12) and the new mixed terms K in Equation (13) are formally
analogous at n order. Both sets contain the corresponding term of
the old Hamiltonian and linear combinations of nested Poisson
brackets involving the nonmixed terms of the old Hamiltonian.

2.3.3. Choice of the New Hamiltonian Terms

The homological Equations (12) provide recursively the
generating function terms W1

n , W2
n , W3

n , and W4
n , after having

conveniently chosen the nonmixed terms Kn000, K0n00, K00n0,
and K000n of the new Hamiltonian. This choice must be made
so that these terms contain at least all the terms of the functions
A belonging to the kernel of the operator H0 + ∂Wn

∂t
. As usual,

we adopt the averaging rule

Kn000 = 1

2π

∫ 2π

0
Hn000(θ ) dθ ≡ 〈Hn000〉, (14)

and do likewise for the remaining three nonmixed terms. Here,
θ represents some of the angle variables. After that, the new
Hamiltonian K does not depend on the periodic angle θ , with
the result that the system is reduced in one degree of freedom.

Regarding mixed terms, in general there is no freedom in their
choice, so that they are completely determined by quantities
fixed in previous steps. However, this is less restrictive than it
may seem at first. In fact, it does not prevent us from applying the
N -parametric method. The only care required is that the new
Hamiltonian must be more meticulously handled than in the
one-parametric case, especially if there are mixed terms in the
old Hamiltonian. This feature was already discussed by Abad
& Ribera (1984) in the context of a biparametric method.

We must distinguish two cases: (1) when there are no mixed
terms in the old Hamiltonian, the mixed terms of the new
Hamiltonian depend on only Lie derivatives of lower-order
terms as do the nonmixed terms (see Equation (12)); (2)
when there are mixed terms in the old Hamiltonian, the mixed
terms of the new Hamiltonian will wholly include them (see
Equation (13)), so that if some of these mixed terms contain
periodic functions they will appear in the new term as well.
In this last case, in order to carry on with the application, we
can take advantage of some artifices. For instance, we could
resort to applying the method by considering the product of
the parameters as another parameter. Otherwise, if we are not
able to cast the new Hamiltonian terms in normal form, the
N -parametric method would be inapplicable.

3. APPLICATION TO THE PERTURBED
GYLDÉN–MEŠČERSKIJ PROBLEM

An interesting problem in binary system dynamics refers
to one or both companions losing mass isotropically. This is
the well-known Gyldén–Meščerskij problem, the Hamiltonian
formulation of which was given by Deprit (1983). The analytical
integration of this problem by means of canonical methods with
one and two parameters was accomplished by Prieto & Docobo
(1997a, 1997b). However, a more complicated situation arises
when other perturbations are taken into account, for example
the one component’s oblateness and/or relativistic effects of the
gravitational field.

In this section, we will consider a binary system with
mass loss depending on time, the primary’s oblateness, and
relativistic effects in the first post-Newtonian approximation.
The corresponding Hamiltonian is expressed in terms of four

small parameters: two of them to quantify the different mass-
loss rates of each component, and the other two to measure the
primary’s oblateness and the relativistic effects, respectively.
This Hamiltonian will be analytically integrated in several cases.

3.1. Analytical Integration by Means of the Four-Parametric
Canonical Perturbation Method

The integration is accomplished by using the four-parametric
version of the N -parametric canonical method developed in
Section 2. Without loss of generality and with the aim of
avoiding cumbersome calculations, we will apply this method
at first order.

The old Hamiltonian in Delaunay’s variables (Andrade 2007)
is given by

H = − µ2

2L2
+

µ̇

µ
Le sin E + J2

µ4R2

L6

(a

r

)3
[

1

4
− 3

4

H 2

G2

− 3

4

(
1 − H 2

G2

)
cos 2(f + g)

]
− 1

c2

µ4

L4

[
σ0 +

[
−σ ′

+ σ3

(
L2

G2
− 1

)
sin2 f

]
a

r
+ σ ′′

(
a

r

)2]
, (15)

in which Delaunay’s variables (L,G,H, �, g, (h)) are a set of
canonical variables, with (L, �), (G, g), and (H,h) being pairs
of conjugate action-angle variables (L is related to energy, G
is the total angular momentum, H is the third component of
angular momentum, � is the mean anomaly, g is the argument
of the periastron, and h is the angle of the ascending node).
Alternatively, µ = G(M1 + M2) is the total stellar mass (M1
and M2 are the stellar masses of each component and G is the
gravitational constant), r is the distance, f is the true anomaly,
E is the eccentric anomaly, e is the eccentricity, and a is the
semimajor axis. Further, J2 and R are the quadrupole moment
and the mean equatorial radius of the primary, respectively. As
usual, c is the velocity of light.

In addition, the following auxiliary parameters are defined,

σ ′ ≡ 4σ0 + σ1

σ ′′ ≡ 4σ0 + 2σ1 + σ2,

with σi , for i = 1, 2, 3, given by

σ0 = 1 − 3σ

8
, σ3 = σ

2
,

σ1 = 3 + σ

2
, σ = µ1 µ2

(µ1 + µ2)2 , (16)

σ2 = −1

2
.

3.1.1. Hamiltonian Expansion

We will consider that the mass-variable law depending on
time is the law of Jeans (1924):

µ̇ = −αµn,

where µ is the stellar mass, α is a positive small parameter, and
1.4 � n � 4.4. We take this expression for each component of
the binary system, so that we have two small parameters α1 and
α2.

Then the Hamiltonian problem (15) depends on the four small
parameters α1, α2 (related to the mass-loss rates), J2 (dynamical
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form factor), and c−2. Therefore, we can consider its expansion
as a series of these small parameters with the aim to apply the
four-parametric canonical method.

Up to first order, the series expansion of the Hamiltonian is
given by

H = H0 + α1 H1000 + α2 H0100 + J2 H0010 +
1

c2
H0001,

where

H0 = − µ2
0

2 L2
,

H1000 = µ
n1
10µ0

L2
(t − t0) − µ

n1
10

µ0
Le sin E,

H0100 = µ
n2
20µ0

L2
(t − t0) − µ

n2
20

µ0
Le sin E,

H0010 = µ4
0 R2

4 G6
(1 + e cos f )3

[
1 − 3

H 2

G2
− 3

(
1 − H 2

G2

)

× cos 2(f + g)

]
,

H0001 = −µ4
0

L4

[
σ0 +

[
−σ ′ + σ3

(
L2

G2
− 1

)
sin2 f

]
L2

G2

× (1 + e cos f ) + σ ′′ L4

G4
(1 + e cos f )2

]
,

with µ0 = µ10 + µ20, µi0 being the mass i at t0.

3.1.2. Elimination of � by Means of the Four-Parametric Method

We look for an infinitesimal canonical transformation of the
type

(L,G, H, �, g, h) ↔ (L∗,G∗,H ∗, �∗, g∗, h∗),

so that the new Hamiltonian

H∗ ≡ H∗(L∗,G∗,H ∗; −, g∗,−)

is independent of some angular variable and, therefore, more
easily integrable. In this case, the short-period terms depending
on � will be eliminated. Apart from this, the long-period terms
depending on g∗ will also disappear due to the first-order
approximation.

The homological Equations (12) to the first order allow us to
obtain successively the corresponding terms W1

1 , W2
1 , W3

1 , and
W4

1 , after having appropriately chosen the terms H∗
1000, H∗

0100,
H∗

0010, and H∗
0001 of the new Hamiltonian.

In this case, since the partial derivatives of the generating
function components are time independent, we have

∂Wj

1

∂t
= 0, j = 1, 2, 3, 4.

At zeroth order
H∗

0 = H0.

At first order, after averaging on the variable �∗ we obtain

H∗
1000 = µ

n1
10µ0

L∗2 (t − t0),

H∗
0100 = µ

n2
20µ0

L∗2 (t − t0), (17)

H∗
0010 = µ4

0 R2

4 L∗3G∗3

[
1 − 3

H ∗2

G∗2

]
,

H∗
0001 = − µ4

0

L∗4

[
−3 σ0 − σ1 + σ3

(
L∗

G∗ − 1

)

+ (4 σ0 + 2 σ1 + σ2)
L∗

G∗

]
.

The generating function of this Lie transformation is

W (α1,α2,J2,c
−2)

1 = α1 W1
1 + α2 W2

1 + J2 W3
1 + c−2 W4

1 ,

the components of which are calculated from Equations (12)
and (17).

To first order, the Lie transformation that gives the change of
variables can be written as

L = L∗ − ∂W1

∂�∗ , � = �∗ +
∂W1

∂L∗ ,

G = G∗ − ∂W1

∂g∗ , g = g∗ +
∂W1

∂G∗ , (18)

H = H ∗ − ∂W1

∂h∗ , h = h∗ +
∂W1

∂H ∗ ,

where the partial derivatives can now be calculated from the
known components of the generating function.

Because of axial symmetry, the generating function is inde-
pendent of h∗, so that from Equation (18) it is inferred that

H = H ∗.

However, since the new Hamiltonian H∗ is independent of
the angular variables �∗, g∗, and h∗, the canonical equations of
Hamilton can be integrated so that

dL∗

dt
= −∂H∗

∂�∗ = 0 ⇒ L∗ = cte,

dG∗

dt
= −∂H∗

∂g∗ = 0 ⇒ G∗ = cte,

dH ∗

dt
= −∂H∗

∂h∗ = 0 ⇒ H ∗ = cte.

The remaining canonical equations are integrated at first
order. The equation for the mean anomaly reads

d�∗

dt
= ∂H∗

∂L∗ = +
µ2

0

L∗3 − α1
2µ

n1
10µ0

L∗3 (t − t0) − α2
2µ

n2
20µ0

L∗3

× (t − t0) − J2
3µ4

0R
2

4L∗4G∗3

[
1 − 3

H ∗2

G∗2

]

+ c−2 µ4
0

L∗5

[
3(σ ′′ + σ3)

L∗

G∗ + 4(σ0 − σ ′ − σ3)

]
.
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From this last equation we obtain

�∗ = �∗
0 + �∗

1 t + �∗
2 t2,

where

�∗
1 = +

µ2
0

L∗3 + α1
2µ

n1
10µ0

L∗3 t0 + α2
2µ

n2
20µ0

L∗3 t0 − J2
3µ4

0R
2

4L∗4G∗3

×
[

1 − 3
H ∗2

G∗2

]
+ c−2 µ4

0

L∗5

[
3(σ ′′ + σ3)

L∗

G∗

+ 4(σ0 − σ ′ − σ3)

]
,

�∗
2 = −α1

µ
n1
10µ0

L∗3 − α2
µ

n2
20µ0

L∗3 ,

with �∗
0 being a constant of integration.

Similarly, for the argument of the periastron

dg∗

dt
= ∂H∗

∂G∗ = −J2
3µ4

0R
2

4L∗3G∗4

[
1 − 5

H ∗2

G∗2

]

+ c−2 µ4
0

L∗3G∗2 (σ ′′ + σ3),

and by integrating
g∗ = g∗

0 + g∗
1 t

where

g∗
1 = −J2

3µ4
0R

2

4L∗3G∗4

[
1 − 5

H ∗2

G∗2

]
+ c−2 µ4

0

L∗4G∗2 (σ ′′ + σ3),

with g∗
0 being a constant of integration.

Finally, for the angle of the node

dh∗

dt
= ∂H∗

∂H ∗ = −J2
3µ4

0R
2

2L∗3G∗4

H ∗

G∗ ,

so that
h∗ = h∗

0 + h∗
1 t,

where

h∗
1 = −J2

3µ4
0R

2

2L∗3G∗4

H ∗

G∗ ,

with h∗
0 being a constant of integration.

3.1.3. Ephemerids Calculation

We take a set of initial values of the orbital elements(
a∗

0 , e∗
0, i

∗
0 , T ∗

0 , ω∗
0, Ω∗

0

)
at t0 with the initial mass µ0.

The corresponding Delaunay variables are obtained:

L∗
0 =

√
µ0 a∗

0 , �∗
0 =

√
µ0

a∗3
0

(t0 − T0),

G∗
0 = L∗

0

√
1 − e∗2

0, g∗
0 = ω∗

0,

H ∗
0 = G∗

0 cos i∗, h∗
0 = Ω∗

0.

The constants of the motion L∗, G∗, H ∗, �∗
0, g∗

0 and h∗
0 are

calculated according to

L∗ = L∗
0 +

(
∂W
∂�∗

)
0

, �∗
0 = �∗

0 −
(

∂W
∂L∗

)
0

,

G∗ = G∗
0 +

(
∂W
∂g∗

)
0

, g∗
0 = g∗

0 −
(

∂W
∂G∗

)
0

,

H ∗ = H ∗
0 +

(
∂W
∂h∗

)
0

= H ∗
0 , h∗

0 = h∗
0 −

(
∂W
∂H ∗

)
0

,

�∗ = �∗
0 + �∗

1 t + �∗
2 t2,

g∗ = g∗
0 + g∗

1 t,

h∗ = h∗
0 + h∗

1 t.

The orbital elements are obtained at any instant t

a = L2

µ
, T = t − �

L3

µ2
,

e =
√

1 − G2

L2
, ω = g,

i = arccos

(
H

G

)
, Ω = h.

It is customary to substitute the time of passage from the
periastron by the eccentric anomaly or by the true anomaly. In
fact, we will use the latter in our calculations.

When one considers the second order, long-period terms de-
pending on the argument of the periastron according to cos 2g∗
appear in the mixed term J2 c−2 of the new Hamiltonian. To
eliminate these it should be necessary to apply the method again,
now in its two-parametric version considering an infinitesimal
canonical transformation of the form

(L∗,G∗,H ∗, �∗, g∗, h∗) ↔ (L∗∗,G∗∗,H ∗∗, �∗∗, g∗∗, h∗∗).

Therefore, the new Hamiltonian

H∗∗ ≡ H∗∗(L∗∗,G∗∗,H ∗∗; −,−,−)

will be independent of the angular variable g∗, so that only
secular terms remain in the new Hamiltonian.

3.2. Practical Example

The implementation of this four-parametric version of the
method was accomplished by using a code programmed in
the Mathematica package. The program was tested with well-
known examples of the influence of the Earth’s oblateness on
artificial satellite orbits (Soffel et al. 1988) and the relativistic
effects produced by the solar gravitational field on the motion of
Mercury (Richardson & Kelly 1988) at first order. In this way,
the results obtained by other authors in both periodic variations
of eccentricity and semimajor axis, and in secular variations of
the argument of the periastron and the angle of the node, were
matched.

In order to demonstrate the power of this method, in what
follows we integrate the motion of a binary system, the or-
bital elements and physical parameters of which are listed in
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Table 1
Orbital Elements and Parameters of the System

Orbital elements Parameters

T 2000 m1 (M�) 15
e 0.2 m2 (M�) 1.0
a (AU) 0.5 α1 10−4

i (◦) 50 α2 10−6

Ω (◦) 40 n1 1.5
ω (◦) 20 n2 3.0

R1 (R�) 5.0
J2 10−5

Table 2
Secular Variations of the Orbital Elements at the End of 1 Year and

Perturbations That Produce Them

Values at the Phenomenon
end of 1 year

∆T −3.68 · 10−4 yr Mass loss
∆a +1.83 · 10−4 AU Mass loss
∆Ω −0′′.34 Oblate shape
∆ω +0′′.28 (1.6%) Oblate shape

+17′′.63 (98.4%) Relativistic effects

Table 1. In the first column we give a set of initial orbital el-
ements: semimajor axis (in astronomical units), eccentricity,
inclination (in degrees), time of passage from the periastron
(in years), argument of the periastron (in degrees), and the an-
gle of the node (in degrees). They are followed by the phys-
ical parameters of the system in the next column: masses (in
solar masses), mass-loss rate parameters, exponents in Jeans’
law, primary stellar radius (in solar radii), and quadrupole mo-
ment. The value of the gravitational constant was taken as
G = 4 π2 AU3 M−1

� yr−2.

3.2.1. Periodic Terms and Secular Variations at First Order

After operations carried out in Subsection 3.1, a new first-
order Hamiltonian free of short-period variations has been
obtained, which can be considered an average (Ferraz-Mello
2007). Because of the first-order integration, some long-period
terms, those due to the primary’s oblateness, remain at second
order. In order to properly understand the results, we have
separately analyzed the contribution of each perturbation under
consideration to the observed variations.

Mass loss causes short-period variations of the eccentricity
and of the argument of the periastron. It has no effect on the
inclination or the angle of the node, although it is responsible
for the secular increments of the semimajor axis and time of
passage from the periastron.

In addition, when the relativistic effects are considered in the
first post-Newtonian approximation, short-period variations of
all the orbital elements appear, except for the inclination and the
angle of the node, which remain unaltered. However, the most
remarkable variation is the secular motion of the argument of
the periastron.

With regard to the primary’s oblateness, despite the first-order
approximation, we obtain one of most remarkable variations,
the secular retrograde motion in the angle of the node. Besides
this, the secular motion of the argument of the periastron is
also obtained. However, we must mention that an exhaustive
study of this perturbation would require a second application
of the method to eliminate long-period terms depending on the
other angle variable g∗ from the second-order Hamiltonian. The

Table 3
Speed and Accuracy Comparisons Between the First-order Analytical Method

(This Paper) and the Numerical Method at the End of 1 Year

Analytical method Numerical method
(N -parametric canonical) (Implicit Runge–Kutta)

∆t = 10−3 yr
CT (s) 45 152
∆E +3.82625 · 10−7 +3.72810 · 10−7

∆G −6.48871 · 10−9 −2.40164 · 10−8

∆T (yr) −3.68546 · 10−4 −3.66532 · 10−4

∆a (AU) +1.83464 · 10−4 +1.82938 · 10−4

∆Ω (′′) −0.337921 −0.333744
∆ω (′′) +25.8237 +24.6070

∆t = 10−4 yr
CT (s) 3509 1688
∆E +3.82624 · 10−7 +3.72810 · 10−7

∆G −6.48871 · 10−9 −2.40164 · 10−8

∆T (yr) −3.67888 · 10−4 −3.67588 · 10−4

∆a (AU) +1.83299 · 10−4 +1.83191 · 10−4

∆Ω (′′) −0.337921 −0.333991
∆ω (′′) +25.8237 +25.0613

accomplishment of that procedure is, however, beyond the scope
of this paper, where we focus essentially upon the derivation of
a multiparametric theory based on Lie transforms.

The secular variations that arise in this problem at the end
of 1 yr are summarized in Table 2, where one can see what
perturbation is responsible for each variation. Thus, ∆T and
∆a are entirely governed by mass loss; ∆Ω is utterly caused
by the primary’s oblateness, whereas in this particular case ∆ω
is divided up in the following way: 1.6% on account of the
primary’s oblateness, while the remaining 98.4% is produced
by relativistic effects.

From the equations that describe the motion of the system,
it is inferred that, except for the semimajor axis and the time
of passage from the periastron, which always vary secularly
due to the mass loss, the increase direction for the argument
of the periastron and the angle of the node depends on orbital
inclination:

∆ω ∼ 5 cos2 i − 1

∆Ω ∼ cos i.

By considering the scenario in that the primary shows an
oblate shape, a critical inclination icritical = 1/

√
5 � 63.◦4 exists

for which the argument of the periastron does not show secular
variations. For higher values this orbital element will begin to
retrograde. In fact, when the inclination is 90◦ the retrograde
motion for the argument of the periastron reaches the maximum,
while the angle of the node remains constant.

3.2.2. Comparison with a Numerical Method

In order to compare both speed and accuracy, we performed
several integrations of the Hamiltonian given in Equation (15)
with parameters shown in Table 1 by alternately using the
N -parametric canonical method (this paper; thereafter, NpCM)
and an implicit Runge–Kutta method (thereafter, IRKM). In
both cases integrations spanned 1 yr and were carried out
taking into account integration step sizes ∆t = 10−3 yr and
∆t = 10−4 yr. All operations were performed in a 2.66 GHz
Pentium IV processor with 3 Gb of RAM.

Comparison results are summarized in Table 3, where the
first column lists the evaluated parameters and the last two
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Figure 1. Secular variations on the orbital elements for the system spanning 1 year (NpCM in blue and IRKM in red).

list the corresponding results for the NpCM and the IRKM,
respectively. The first parameter gives the computing time (CT,
in seconds), whereas the next two rows give energy and angular
momentum conservation, respectively. The last four rows list
secular variations of time of passage from the periastron (in
years), the semimajor axis (in astronomical units), the angle of
the node (in arcseconds), and the argument of the periastron (in
arcseconds). On the other hand, Table 3 is divided into two parts
as well. The upper part shows results obtained with a integration
step size ∆t = 10−3 yr, whereas the lower part shows those
obtained with a smaller integration step size ∆t = 10−4 yr. The
time-dependent evolution of the orbital elements undergoing
secular variations is shown in Figure 1, where blue and red lines
refer to NpCM and IRKM, respectively.

From an analysis on Table 3, we conclude that NpCM is
very fast with the largest integration step size (∆t = 10−3 yr),
exactly 3.4 times faster than IRKM. In contrast, IRKM is
2.1 times faster than NpCM when ∆t = 10−4 yr. From the
point of view of accuracy we want to emphasize that NpCM
gives similar results independently of the integration step sizes.
In fact, we can see that, for instance, ∆Ω and ∆ω converge
to the same value for NpCM in both cases, whereas they are
relatively different for IRKM. Similar results are also obtained
by using the IRKM with the small integration step size, but
at the expense of consuming much more time. However, both
integrators conserve energy to better than 10−7; moreover,
NpCM conserves angular momentum to better than 10−9, one
order better than IRKM. In short, NpCM allows us to obtain
accurate results with relatively large integration step sizes or, in
other words, with short computing times.

4. SUMMARY

Lie transforms have proved to be a powerful tool to solve
nonlinear differential equations. In particular, canonical meth-
ods of perturbations defined from them are very suitable to treat
Hamiltonian systems depending on small parameters.

In accordance with this, most meaningful achievements of
the N -parametric (analytical) canonical method presented in
this paper can be summarized as follows.

1. This method allows us to analytically solve problems
involving an arbitrary number of superposed perturbations
as a whole.

2. We have derived general expressions depending on N small
parameters that can be easily handled in order to obtain
a set of N (+1) homological equations, the solution of
which allows us to obtain the generating function of the
transformation up to a certain order.

3. In addition, a set of mixed terms is obtained. This is the most
important difference in regard to one-parameter methods,
which do not exhibit mixed terms. Before anything else, it
is essential to verify whether the old Hamiltonian exhibits
mixed terms including periodic functions or not, since
they would appear ineluctably as mixed terms of the new
Hamiltonian.

4. In order to solve homological equations, it is customary to
average non-mixed terms of the Hamiltonian over certain
angle variables—in the same way as it is accomplished for
one-parameter methods. Thus, the new Hamiltonian does
not depend on the periodic angles.
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5. Lastly, Lie series structure is very appropriate to construct
programmable schemes by using algebraic manipulators.

From another point of view, with the aim to evaluate this
method, we have considered a stellar binary system undergoing
altogether four perturbations: mass loss in both components,
oblateness of the primary and relativistic effects of the gravita-
tional field. The following outlines the main conclusions con-
cerning the application of the method to this perturbed Gyldén–
Meščerskij problem.

1. A four-parametric version of the N -parametric canonical
method developed in Section 2 was applied at first order,
without loss of generality, to the Hamiltonian of this system
in order to eliminate short-period terms depending on the
mean anomaly.

2. Therefore, the new Hamiltonian exhibits only secular terms.
Despite this, a long-period part due to the oblateness
remains at second order. This last also could be eliminated
by applying a second transformation to the second-order
Hamiltonian, but such a goal is, however, beyond the scope
of this paper.

3. The most remarkable results obtained with this method
regarding the motion of this perturbed binary system are the
secular variations of the time of passage from the periastron,
the semimajor axis, the angle of the node, and the argument
of the periastron.

4. Both speed and accuracy tests have been performed by
comparing first-order analytical and numerical integrations.
These integrations have been carried out taking into account
the perturbations altogether. From them, we conclude that
the N -parametric canonical method allows us to obtain
accurate results with relatively large integration step sizes,
which is the same as with short computing times.

Finally, we want to emphasize that the applicability of the
N -parametric canonical method presented in this paper is not
circumscribed to the multiple stellar systems field, so that it

can be used to integrate Hamiltonian systems depending on N
parameters not only in astronomy but also in other branches of
mathematics and physics.
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